THE PERPLEXING PROBLEM OF $\boldsymbol{y}^{x}=\boldsymbol{x}^{y}$

If we type this equation into the Autograph program we get the following graph:

However this is not the whole story! If we examine the part of the graph which is the same as the line $\boldsymbol{y}=\boldsymbol{x}$ we can see that if we let $\boldsymbol{y}=\boldsymbol{x}=\boldsymbol{b}$ then obviously $\mathbf{b}^{\mathbf{b}}$ always equals $\mathbf{b}^{\mathbf{b}}$
$y^{x}=x^{y}$
$1^{1}=1^{1}$
$2^{2}=2^{2}$
$3^{3}=3^{3}$
ALSO:
$(1 / 2)^{1 / 2}=(1 / 2)^{1 / 2}$
$(1 / 3)^{1 / 3}=(1 / 3)^{1 / 3}$
$(5 / 8)^{5 / 8}=(5 / 8)^{5 / 8}$
But the negative numbers also fit the equation $y^{x}=x^{y}$
Suppose $\boldsymbol{y}=\boldsymbol{x}=-1$ then $(-1)^{-1}=\left(\frac{1}{-1}\right)^{+1}=-1$
Also, if $y=x=-2$ then $(-2)^{-2}=\left(\frac{1}{-2}\right)^{+2}=\frac{+1}{4}$
Also, if $y=x=-3$ then $(-3)^{-3}=\left(\frac{1}{-3}\right)^{+3}=-\frac{1}{27}$
Also, if $y=x=-\frac{1}{2}$ then $=\left(\frac{1}{-2}\right)^{-1 / 2}=(-2)^{1 / 2}=i \sqrt{ } 2$
It does not matter that this is an imaginary number!
All that matters is that $y^{x}=\boldsymbol{x}^{y}$ and in this case $=i \sqrt{ } 2$.
This means we should extend the above graph as follows: (purple)

The case of $y=x=0$ is a concern of course.

Mathematicians always "shy away" from things like this with a glib comment such as "this is not defined".
I think that this is fine in some cases like $\frac{\mathbf{0}}{\mathbf{0}}$ which we say is "indeterminate".
I like this explanation:
If $a \times b=c \times d$ then $\frac{a}{c}=\frac{d}{b}$
Suppose $a=6, b=0, c=7$ and $d=0$
So if $6 \times 0=7 \times 0$ then $\frac{6}{7}=\frac{0}{0}$
In other words $\frac{0}{0}$ can equal ANYTHING!
(Just substitute any numbers for a and c)
It is "indeterminate" as it is, BUT we can "determine" it.
$e g \lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h}=\underline{0}$ if we just let $h=0$
BUT if we simplify it first:
$\lim _{h \rightarrow 0} \frac{h(2 x+h)}{h} \quad$ (here we can cancel the h 's because h is just a small value)
$=\lim _{h \rightarrow 0}(2 x+h)$
$=2 x$

HOWEVER I think 0^{0} is a bit different.

Consider $\lim _{b \rightarrow 0} b^{0}$

Obviously $(0.000000001)^{0}=1$ so $\lim _{b \rightarrow 0} b^{0} \rightarrow \mathbf{1}$
Compare with $\lim _{b \rightarrow 0} 0^{b}$
Obviously $\quad 0^{0.000000001}=0$ so $\lim _{\boldsymbol{b} \rightarrow 0} \boldsymbol{0}^{\boldsymbol{b}} \rightarrow \mathbf{0}$
I think that 0^{0} can only be 0 or 1 and in this case I believe the sensible conclusion is that $0^{0} \rightarrow 0$ thus completing the line $y=x$.

So instead of saying 0^{0} is "NOT DEFINED" it seems sensible to simply "DEFINE" it as being equal to 0 in this particular case.
(But any purist is welcome to exclude this point if desired.)
But if $x=y=0$ then whatever 0^{0} equals (either 0 or 1) then y^{x} still equals x^{y}.

Incidentally for the graph of $y=x^{x}$ we have the same problem when $x=0$ because $y=0^{0}$

SEE http://screencast.com/t/m4fmGwmkrT9

The full graph of $y=x^{x}$ for REAL values of x (but allowing imaginary y values) is below:

Clearly $y=\lim _{x \rightarrow 0} x^{x}$ approaches $y=1$ from the left and from the right. So instead of saying 0^{0} is "NOT DEFINED" it seems sensible to simply "DEFINE IT" as being equal to 1 in this particular case.

The most interesting types of points on $y^{x}=x^{y}$ are those like

 $(2,4)$ and $(4,2)$ because $y^{x}=4^{2}=16$ and $x^{y}=2^{4}=16$Suppose we choose $\boldsymbol{y}=5$, then we need to solve $5^{x}=x^{5}$ to find the \boldsymbol{x} value. Either solving graphically by finding the intersection of $\boldsymbol{Y}=5^{\boldsymbol{x}}$ and $\boldsymbol{Y}=\boldsymbol{x}^{5}$ or using the equation solver on a graphics calculator, we get: $x=1.764921915$ TESTING: $5^{1.764921915}=17.1248777$
and $1.764921915^{5}=17.1248777$
Suppose we choose $\boldsymbol{y}=\boldsymbol{\sigma}$, then solving $\boldsymbol{\sigma}^{\boldsymbol{x}}=\boldsymbol{x}^{\boldsymbol{6}}$ we get $\boldsymbol{x}=1.624243846$
TESTING: $\quad \sigma^{1.624243846}=18.36146714$
and $1.624243846^{6}=18.36146714$
Choosing $\boldsymbol{y}=3$ we get $\boldsymbol{x} \approx 2.478$ so we can plot $(2.478,3)$ and (3, 2.478)
Points like the above examples, produce the part of the curve which resembles a hyperbola.

The apparent "hole" at $\boldsymbol{x}=2.719$ is very unusual but on solving
$2.719^{x}=x^{2.719}$
we do get $\boldsymbol{x}=2.719$
This means the point $x=2.719$, $y=2.719$ satisfies $y^{x}=x^{y}$ and this must be the point where the two sections of the graph intersect.

So I will fill in the "hole" at (2.719, 2.719)

It occurred to me that I should also try $x=-2, y=-4$
TESTING: $(-2)^{-4}=(-1 / 2)^{4}=\frac{1}{16}$

$$
(-4)^{-2}=(-1 / 4)^{2}=\frac{1}{16}
$$

Also, considering $x=y=-2.718$
Obviously $(-2.718)^{-2.718}=(-2.718)^{-2.718}$
The fact that $(-2.718)^{-2.718}=\mathbf{- 0 . 0 4 1 7 7} \mathbf{- 0 . 0 5 1 1 4 i}$ which is a complex number, does not matter as long as it fits $\boldsymbol{y}^{\boldsymbol{x}}=\boldsymbol{x}^{\boldsymbol{y}}$

So we can put the points $(-2,-4)$ and $(-4,-2)$ and $(-2.718,-2.718)$ on the graph. See below:

HOWEVER, trying $x=-1.76492$ and $y=-5$
$(-1.76492)^{-5}=-0.05839457758$ BUT $(-5)^{-1.76492}=0.04318+i 0.03931$
Disappointingly, this does not fit the equation $y^{x}=x^{y}$ because $y^{x} \neq x^{y}$
Similarly, trying $\boldsymbol{x}=-2.478$ and $\boldsymbol{y}=-3$

$$
(-2.478)^{-3}=-0.0657 \text { BUT }(-3)^{-2.478}=0.00454-i 0.0656
$$

Also this does not fit the equation $\boldsymbol{y}^{x}=\boldsymbol{x}^{y}$ because $\boldsymbol{y}^{x} \neq \boldsymbol{x}^{y}$
Obviously, I was hoping that the part of the curve resembling a hyperbola would be "reflected" or "rotated" to join up the points (-2, -4) and (-4, -2) and (-2.718, -2.718) in the $3^{\text {rd }}$ quadrant.

See RED CURVE below:

The following is a slight diversion but it does apply to this problem:

Think of $\boldsymbol{y}=\boldsymbol{x}^{2}$ as a process of MAPPING \boldsymbol{x} values from an \boldsymbol{x} axis onto \boldsymbol{y} values on a \boldsymbol{y} axis as shown below:

Firstly $0^{2}=0$ so we join $\boldsymbol{x}=0$ to $\boldsymbol{y}=0$

Now if $x= \pm 1, y=+1$

If $x= \pm 2, y=+4$

And if $x= \pm 3, y=+9$

This of course produces the "normal" parabola $y=x^{2}$.

But now let us repeat this process of MAPPING \boldsymbol{x} values from an \boldsymbol{x} PLANE onto \boldsymbol{y} values on a \boldsymbol{y} axis as shown below:
-9
-4
$-1 \quad 0 \quad+1$
$+4$
+9 y axis

The diagram below shows $x= \pm 3, y=+9$ (red), $x= \pm 2, y=+4$ (orange)

BUT NOW WE CAN ADD SOME IMAGINARY x VALUES WHICH

 PRODUCE REAL y VALUES. (This is the whole idea of Phantom Graphs!)Here we add $x= \pm i$ which map onto $y=-1$ (turquoise)
-9
-4
$-1 \quad 0 \quad+1$
+4
+9 y axis

Now we add $x= \pm 2 i$ and $y=-4$ (purple)

And finally $\boldsymbol{x}= \pm \mathbf{3 i}$ and $\boldsymbol{y}=-\mathbf{9}$ (yellow)

This of course produces the basic PHANTOM GRAPH of $y=x^{2}$ if we use the complex x plane and place the vertical y axis through it.

The whole point in the last 5 pages was to use the idea of mapping complex x values onto complex y values for the problem $y^{x}=x^{y}$

I established earlier that ALL real or imaginary values such as $\boldsymbol{x}=\boldsymbol{y}=\boldsymbol{a}+\boldsymbol{i} \boldsymbol{b}$ must satisfy $\boldsymbol{y}^{\boldsymbol{x}}=\boldsymbol{x}^{\boldsymbol{y}}$ so the following diagram indicates this.

This is $x=2+3 i$
mapping onto $y=2+3 i$

The special REAL points referred to earlier, such as the pairs:
$x=2, y=4$ and $x=4, y=2$
$x=3, y=2.48$ and $x=2.48, y=3$
$x=5, y=1.77$ and $x=1.77, y=5$
$x=6, y=1.62$ and $x=1.62, y=6$
$x=7, y=1.53$ and $x=1.53, y=7$
$x=8, y=1.46$ and $x=1.46, y=8$
$x=9, y=1.41$ and $x=1.41, y=9$
...can also be placed on a mapping of an x axis to a y axis.

(This reminds me of the "curve stitching" that young children do!)

SOME MORE SPECIAL REAL POINTS!

Earlier, I referred to the "nice" whole number points $(2,4)$ and $(4,2)$ which fit the equation $\boldsymbol{y}^{x}=\boldsymbol{x}^{y}$.
Suppose we were not aware of these solutions and we say to ourselves,
"If $y=2$, what would x be?"
ie Find x if $2^{x}=x^{2}$
If we think of this as the intersection of two graphs we could proceed as follows:
Draw $Y=2^{x}$ and $Y=x^{2}$ (I am using a capital Y because these Y values are not the same as the y values in the equation!)

This intersection point gives the value $x=4$ so that $2^{4}=4^{2}$ (both equal 16)

The obvious solution is of course $x=2$ because $2^{2}=2^{2}$!

HOWEVER, there is a $3^{\text {rd }}$ solution which is at $x \approx-0.7667$

If we test this $3^{\text {rd }}$ solution we get $\quad 2^{(-0.7667)}=0.5878$

$$
\text { and }(-0.7667)^{2}=0.5878
$$

This method will not produce 3 solutions for ODD \boldsymbol{y} values such as $\boldsymbol{y}=\mathbf{3}$ because the graphs $\boldsymbol{Y}=\boldsymbol{3}^{\boldsymbol{x}}$ and $\boldsymbol{Y}=\boldsymbol{x}^{3}$ only intersect TWICE.

NO intersection occurs here.

We will only get solutions for $\operatorname{EVEN} \boldsymbol{y}$ values $4^{x}, \boldsymbol{6}^{\boldsymbol{x}}, 8^{\boldsymbol{x}} \ldots$
If we draw $\boldsymbol{Y}=\boldsymbol{4}^{\boldsymbol{x}}$ and $\boldsymbol{Y}=\boldsymbol{x}^{\boldsymbol{4}}$ we get graphs which intersect 3 times.

The x values at the intersection points are $x=4,2$ and -0.7667 (again)

CHECK:

$$
\begin{aligned}
4^{(-0.7667)} & =0.3455 \\
(-0.7667)^{4} & =0.3455
\end{aligned}
$$

We can have: $x=4, y=-0.7667$
AND $x=-0.7667, y=4$

If we draw $\boldsymbol{Y}=\boldsymbol{\sigma}^{\boldsymbol{x}}$ and $\boldsymbol{Y}=\boldsymbol{x}^{\boldsymbol{6}}$ we also get graphs which intersect 3 times.
The x values are $x=6,1.624$ and -0.7899

CHECK:

$$
\begin{aligned}
6^{(-0.7899)} & =0.2429 \\
(-0.7899)^{6} & =0.2429
\end{aligned}
$$

We can have: $x=6, y=-0.7899$ and $x=-0.7899, y=6$

If we draw $\boldsymbol{Y}=\boldsymbol{8}^{\boldsymbol{x}}$ and $\boldsymbol{Y}=\boldsymbol{x}^{\boldsymbol{8}}$ we also get graphs which intersect 3 times.
The x values are $x=8,1.463$ and -0.8101

CHECK:

$$
\begin{aligned}
8^{(-0.8101)} & =0.1855 \\
(-0.8101)^{8} & =0.1855
\end{aligned}
$$

We can have: $x=8, y=-0.8101$ and $x=-0.8101, y=8$

If we draw $\boldsymbol{Y}=1 \boldsymbol{0}^{\boldsymbol{x}}$ and $\boldsymbol{Y}=\boldsymbol{x}^{10}$ we also get graphs which intersect 3 times.
The x values are $x=10,1.371$ and -0.8267
CHECK:

$$
\begin{aligned}
10^{(-0.8267)} & =0.1490 \\
(-0.8267)^{10} & =0.1490
\end{aligned}
$$

We can have: $x=10, y=-0.8267$ and $x=-0.8267, y=10$

These are all the solutions of $\boldsymbol{y}^{\boldsymbol{x}}=\boldsymbol{x}^{\boldsymbol{y}}$ I have found so far!

See below:

I have not YET found any MORE!!!
Apart from the infinite complex solutions of the form $x=y=a+i b$ there are no actual "PHANTOM CURVES" because phantom graphs require A COMPLEX PLANE AND A REAL AXIS.

If the equation $y^{x}=x^{y}$ had any complex solutions such as $x=a+b i$ and $y=c+i d$ then we would need a complex x plane and a complex y plane which would require 4 dimensional space. However, there may be some values a, b, c, d such that $(a+i b)^{(c+i d)}=(c+i d)^{(a+i b)}$ but I am still looking!

