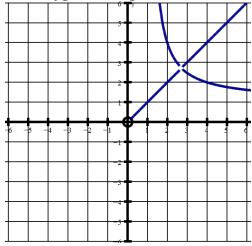
THE PERPLEXING PROBLEM OF $y^x = x^y$

If we type this equation into the Autograph program we get the following graph:



However this is not the whole story! If we examine the part of the graph which is the same as the line y = x we can see that if we let y = x = b then obviously $\mathbf{b}^{\mathbf{b}}$ always equals $\mathbf{b}^{\mathbf{b}}$

$$y^{x} = x^{y}$$

$$1^{1} = 1^{1}$$

$$2^{2} = 2^{2}$$

$$3^{3} = 3^{3}$$
ALSO:
$$(\frac{1}{2})^{\frac{1}{2}} = (\frac{1}{2})^{\frac{1}{2}}$$

$$(\frac{1}{3})^{\frac{1}{3}} = (\frac{1}{3})^{\frac{1}{3}}$$

$$(\frac{5}{8})^{\frac{5}{8}} = (\frac{5}{8})^{\frac{5}{8}}$$

But the negative numbers also fit the equation $y^x = x^y$

Suppose
$$y = x = -1$$
 then $(-1)^{-1} = \left(\frac{1}{-1}\right)^{+1} = -1$

Also, if
$$y = x = -2$$
 then $(-2)^{-2} = \left(\frac{1}{-2}\right)^{+2} = \frac{+1}{4}$

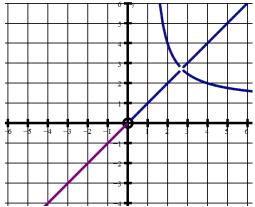
Also, if
$$y = x = -3$$
 then $(-3)^{-3} = \left(\frac{1}{-3}\right)^{+3} = -\frac{1}{27}$

Also, if
$$y = x = -\frac{1}{2}$$
 then $= \left(\frac{1}{-2}\right)^{-\frac{1}{2}} = (-2)^{\frac{1}{2}} = i\sqrt{2}$

It does not matter that this is an imaginary number!

All that matters is that $y^x = x^y$ and in this case $= i\sqrt{2}$.

This means we should extend the above graph as follows: (purple)



The case of y = x = 0 is a concern of course.

Mathematicians always "shy away" from things like this with a glib comment such as "this is not defined".

I think that this is fine in some cases like $\frac{\mathbf{0}}{\mathbf{0}}$ which we say is "indeterminate".

I like this explanation:

If
$$a \times b = c \times d$$
 then $\underline{a} = \underline{d}$

Suppose
$$a = 6$$
, $b = 0$, $c = 7$ and $d = 0$

So if
$$6 \times 0 = 7 \times 0$$
 then $\frac{6}{7} = \frac{0}{0}$

In other words $\underline{0}_0$ can equal ANYTHING!

(Just substitute any numbers for a and c)

It is "indeterminate" as it is, BUT we can "determine" it.

$$eg \lim_{h \to 0} \frac{2xh + h^2}{h} = \frac{0}{0} \text{ if we just let } h = 0$$

BUT if we simplify it first:

 $\lim_{h\to 0} \frac{h(2x+h)}{h}$ (here we can cancel the h's because h is just a small value)

$$=\lim_{h\to 0} (2x+h)$$

$$=2x$$

HOWEVER I think 0^0 is a bit different.

Consider $\lim_{b\to 0} b^0$

Obviously
$$(0.000000001)^0 = 1$$
 so $\lim_{b \to 0} b^0 \to 1$

Compare with $\lim_{b\to 0} 0^b$

Obviously
$$0^{0.000000001} = 0$$
 so $\lim_{b \to 0} 0^b \to 0$

I think that 0^0 can only be 0 or 1 and in this case I believe the sensible conclusion is that $0^0 \to 0$ thus completing the line y = x.

So instead of saying 0^0 is "NOT DEFINED" it seems sensible to simply "DEFINE" it as being equal to 0 in this particular case.

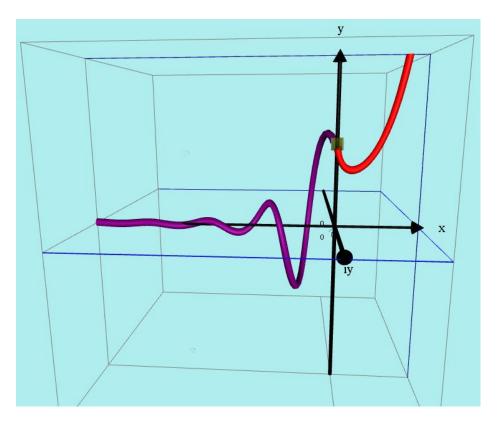
(But any purist is welcome to exclude this point if desired.)

But if x = y = 0 then whatever 0^0 equals (either 0 or 1) then y^x still equals x^y .

Incidentally for the graph of $y = x^x$ we have the same problem when x = 0 because $y = 0^0$

SEE http://screencast.com/t/m4fmGwmkrT9

The full graph of $y = x^x$ for REAL values of x (but allowing imaginary y values) is below:



Clearly $y = \lim_{x \to 0} x^x$ approaches y = 1 from the left and from the right.

So instead of saying 0^0 is "NOT DEFINED" it seems sensible to simply "DEFINE IT" as being equal to 1 in this particular case.

The most interesting types of points on $y^x = x^y$ are those like (2, 4) and (4, 2) because $y^x = 4^2 = 16$ and $x^y = 2^4 = 16$

Suppose we choose y = 5, then we need to solve $5^x = x^5$ to find the x value. Either solving *graphically* by finding the intersection of $Y = 5^x$ and $Y = x^5$ or using the *equation solver* on a graphics calculator, we get: x = 1.764921915

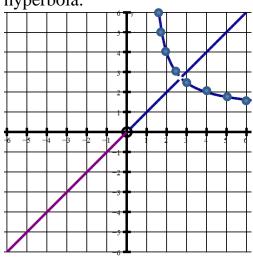
TESTING: $5^{1.764921915} = 17.1248777$ and 1.764921915⁵ = 17.1248777

Suppose we choose y = 6, then solving $6^x = x^6$ we get x = 1.624243846 **TESTING:** $6^{1.624243846} = 18.36146714$

and $1.624243846^6 = 18.36146714$

Choosing y = 3 we get $x \approx 2.478$ so we can plot (2.478, 3) and (3, 2.478) Points like the above examples, produce the part of the curve which resembles a

hyperbola.



The apparent "hole" at x = 2.719 is very unusual but on solving $2.719^x = x^{2.719}$ we do get x = 2.719

This means the point x = 2.719, y = 2.719 satisfies $y^x = x^y$ and this must be the point where the two sections of the graph intersect.

So I will fill in the "hole" at (2.719, 2.719)

It occurred to me that I should also try x = -2, y = -4

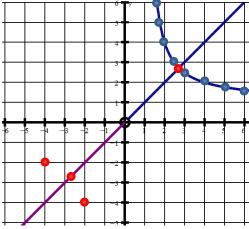
TESTING: $(-2)^{-4} = (-\frac{1}{2})^4 = \underline{1}$

 $(-4)^{-2} = (-1/4)^2 = \frac{1}{16}$

Also, considering x = y = -2.718Obviously $(-2.718)^{-2.718} = (-2.718)^{-2.718}$

The fact that $(-2.718)^{-2.718} = -0.04177 - 0.05114i$ which is a complex number, does not matter as long as it fits $v^x = x^y$

So we can put the points (-2, -4) and (-4, -2) and (-2.718, -2.718) on the graph. See below:



HOWEVER, trying x = -1.76492 and y = -5

$$(-1.76492)^{-5} = -0.05839457758 \ BUT \ (-5)^{-1.76492} = 0.04318 + i \ 0.03931$$

Disappointingly, this does not fit the equation $y^x = x^y$ because $y^x \neq x^y$

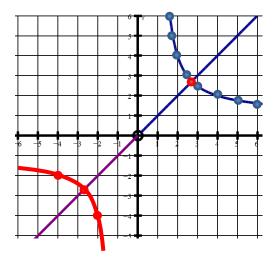
Similarly, trying x = -2.478 and y = -3

$$(-2.478)^{-3} = -0.0657 BUT (-3)^{-2.478} = 0.00454 - i 0.0656$$

Also this does not fit the equation $y^x = x^y$ because $y^x \neq x^y$

Obviously, I was <u>hoping</u> that the part of the curve resembling a hyperbola would be "reflected" or "rotated" to join up the points (-2, -4) and (-4, -2) and (-2.718, -2.718) in the 3^{rd} quadrant.

See **RED CURVE** below:

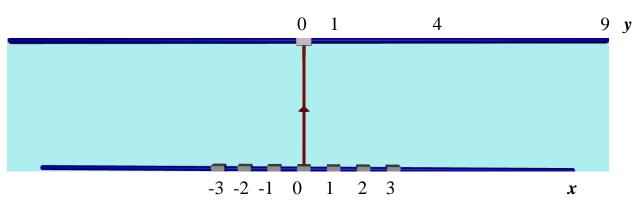


The following is a slight diversion but it does apply to this problem:

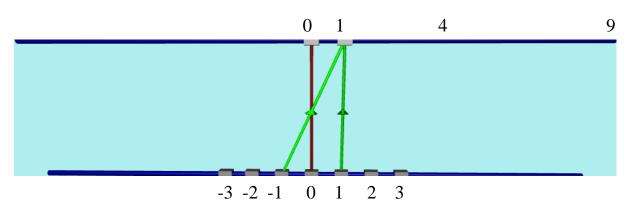
Think of $y = x^2$ as a process of **MAPPING** x values from an x axis onto y values on a y axis as shown below:



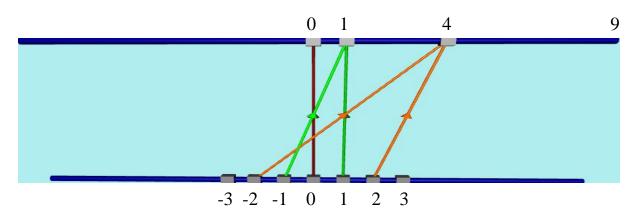
Firstly $0^2 = 0$ so we join $\mathbf{x} = 0$ to $\mathbf{y} = 0$



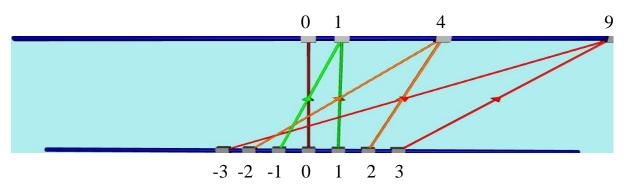
Now if $x = \pm 1$, y = +1



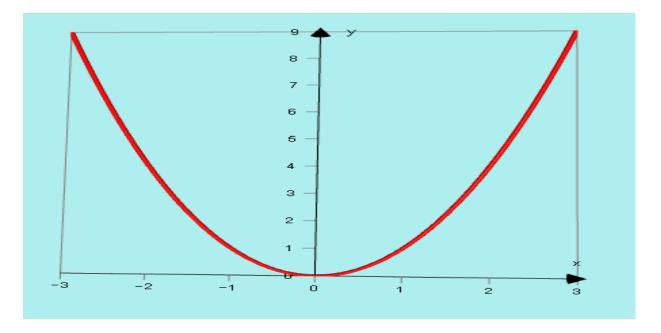
If $x = \pm 2$, y = +4



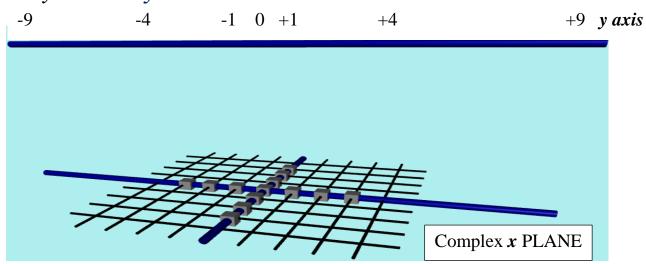
And if $x = \pm 3$, y = +9



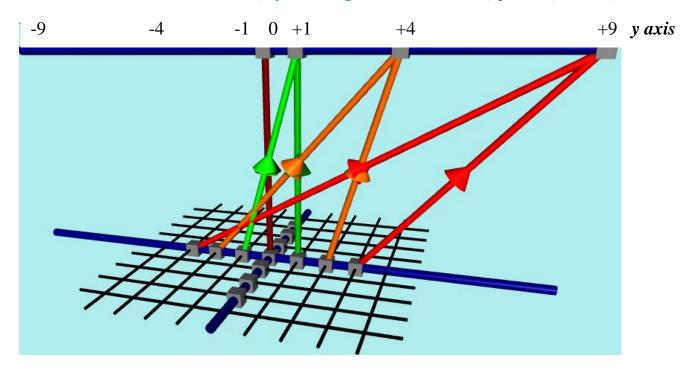
This of course produces the "normal" parabola $y = x^2$.



But now let us repeat this process of MAPPING *x* values from an *x PLANE* onto *y* values on a *y axis* as shown below:

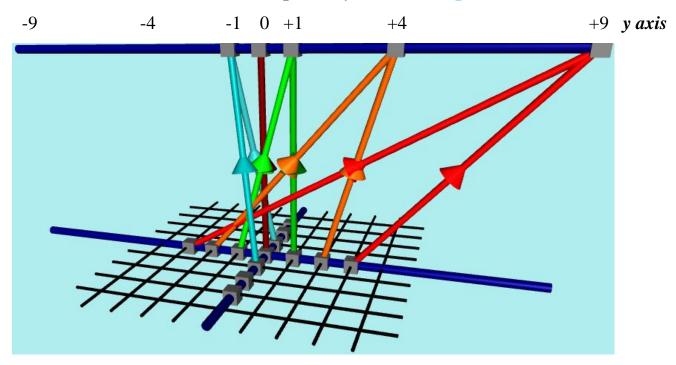


The diagram below shows $x = \pm 3$, y = +9 (red), $x = \pm 2$, y = +4 (orange) $x = \pm 1$, y = +1 (green) and x = 0, y = 0 (brown)

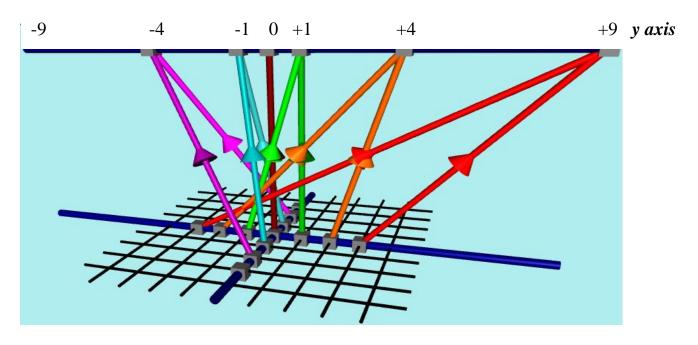


BUT NOW WE CAN ADD SOME IMAGINARY x VALUES WHICH PRODUCE REAL y VALUES. (This is the whole idea of Phantom Graphs!)

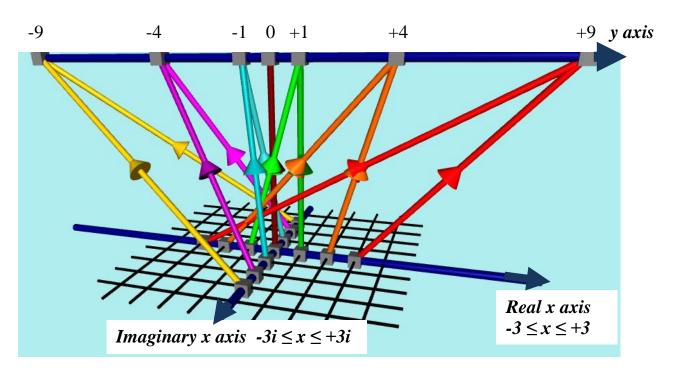
Here we add $x = \pm i$ which map onto y = -1 (turquoise)



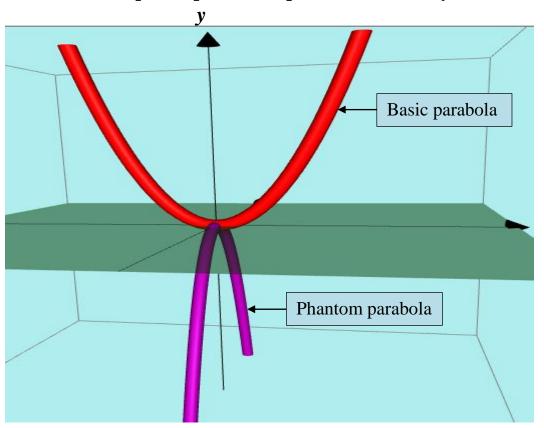
Now we add $x = \pm 2i$ and y = -4 (purple)



And finally $x = \pm 3i$ and y = -9 (yellow)

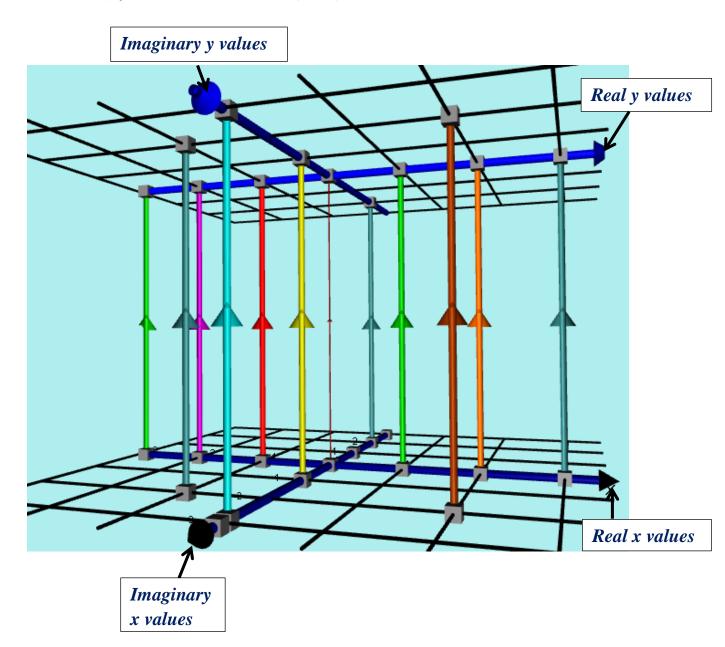


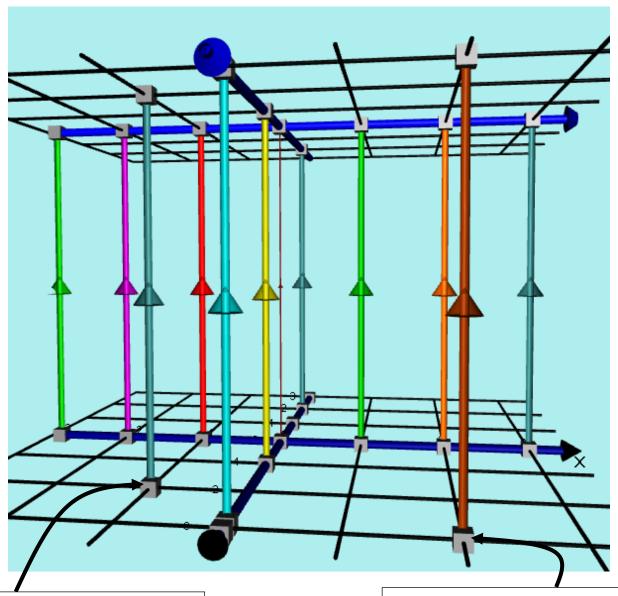
This of course produces the basic PHANTOM GRAPH of $y = x^2$ if we use the complex x plane and place the vertical y axis through it.



The whole point in the last 5 pages was to use the idea of mapping complex x values onto complex y values for the problem $y^x = x^y$

I established earlier that ALL real or imaginary values such as x = y = a + ib must satisfy $y^x = x^y$ so the following diagram indicates this.





This is x = -1 + 2imapping onto y = -1 + 2i This is x = 2 + 3imapping onto y = 2 + 3i

The special REAL points referred to earlier, such as the pairs:

$$x = 2, y = 4$$
 and $x = 4, y = 2$

$$x = 3$$
, $y = 2.48$ and $x = 2.48$, $y = 3$

$$x = 5$$
, $y = 1.77$ and $x = 1.77$, $y = 5$

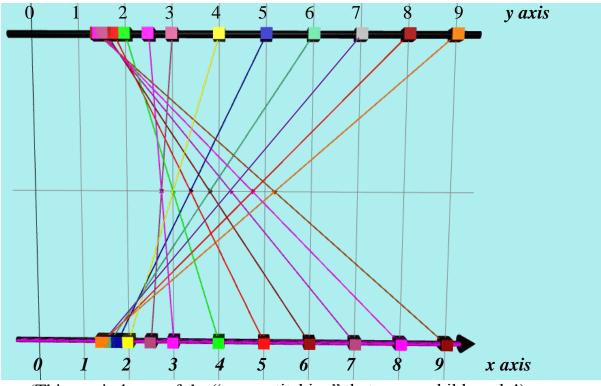
$$x = 6$$
, $y = 1.62$ and $x = 1.62$, $y = 6$

$$x = 7$$
, $y = 1.53$ and $x = 1.53$, $y = 7$

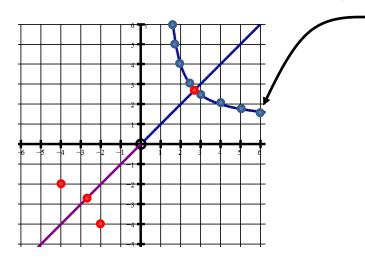
$$x = 8$$
, $y = 1.46$ and $x = 1.46$, $y = 8$

$$x = 9$$
, $y = 1.41$ and $x = 1.41$, $y = 9$

...can also be placed on a mapping of an x axis to a y axis.



(This reminds me of the "curve stitching" that young children do!)



The above diagram represents the points which form this curved section resembling a hyperbola.

SOME MORE SPECIAL REAL POINTS!

Earlier, I referred to the "nice" whole number points (2, 4) and (4, 2) which fit the equation $y^x = x^y$.

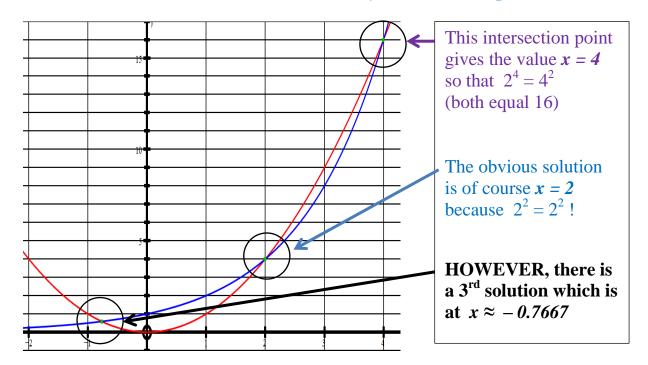
Suppose we were not aware of these solutions and we say to ourselves,

"If
$$y = 2$$
, what would x be?"

ie Find x if
$$2^x = x^2$$

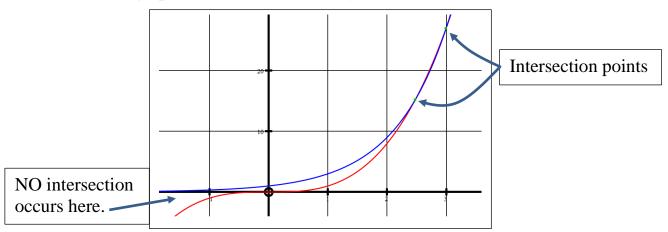
If we think of this as the intersection of two graphs we could proceed as follows:

Draw $Y = 2^x$ and $Y = x^2$ (I am using a capital Y because these Y values are not the same as the y values in the equation!)



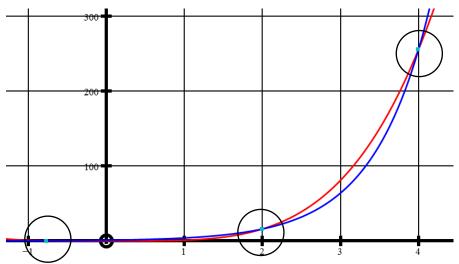
If we test this 3^{rd} solution we get $2^{(-0.7667)} = 0.5878$ and $(-0.7667)^2 = 0.5878$

This method will not produce 3 solutions for ODD y values such as y = 3 because the graphs $Y = 3^x$ and $Y = x^3$ only intersect TWICE.



We will only get solutions for EVEN y values 4^x , 6^x , 8^x ...

If we draw $Y = 4^x$ and $Y = x^4$ we get graphs which intersect 3 times.



The x values at the intersection points are x = 4, 2 and -0.7667 (again)

CHECK:
$$4^{(-0.7667)} = 0.3455$$
 $(-0.7667)^4 = 0.3455$

We can have:
$$x = 4$$
, $y = -0.7667$
AND $x = -0.7667$, $y = 4$

If we draw $Y = 6^x$ and $Y = x^6$ we also get graphs which intersect 3 times. The x values are x = 6, 1.624 and -0.7899

CHECK:
$$6^{(-0.7899)} = 0.2429$$
 $(-0.7899)^6 = 0.2429$

We can have:
$$x = 6$$
, $y = -0.7899$
and $x = -0.7899$, $y = 6$

If we draw $Y = 8^x$ and $Y = x^8$ we also get graphs which intersect 3 times. The x values are x = 8, 1.463 and -0.8101

CHECK:
$$8^{(-0.8101)} = 0.1855$$
 $(-0.8101)^8 = 0.1855$

We can have:
$$x = 8$$
, $y = -0.8101$
and $x = -0.8101$, $y = 8$

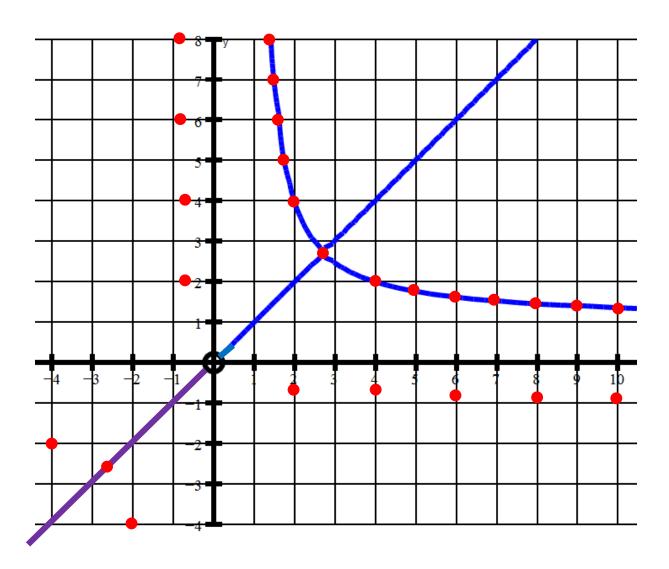
If we draw $Y = 10^x$ and $Y = x^{10}$ we also get graphs which intersect 3 times. The x values are x = 10, 1.371 and -0.8267

CHECK:
$$10^{(-0.8267)} = 0.1490$$
 $(-0.8267)^{10} = 0.1490$

We can have: x = 10, y = -0.8267and x = -0.8267, y = 10

These are all the solutions of $y^x = x^y$ I have found so far!

See below:



I have not YET found any MORE!!!

Apart from the infinite complex solutions of the form x = y = a + ib there are no actual "PHANTOM CURVES" because phantom graphs require A COMPLEX PLANE AND A REAL AXIS.

If the equation $y^x = x^y$ had any complex solutions such as x = a + bi and y = c + id then we would need a complex x plane and a complex y plane which would require 4 dimensional space. However, there may be some values a, b, c, d such that $(a + ib)^{(c+id)} = (c + id)^{(a+ib)}$ but I am still looking!